

MBD-010-001107

Seat No. _____

First Year B. B. A. (Sem. I) (CBCS) Examination

November / December – 2016

107 - Business Mathematics - I

(Old Course)

Faculty Code : 010

Subject Code : 001107

Time : $2\frac{1}{2}$ Hours]

[Total Marks : **70**

Instruction : All questions are compulsory.

1 (a) Define following :

7

- (1) Domain
- (2) Co-Domain
- (3) Range of function
- (4) Many one function.

(b) If $f(x) = \frac{x^2 - x}{x + 3}$ find, $\frac{f(1) + f(2)}{f(-2) + f(0)}$.

7

OR

1 (a) Explain types of functions.

7

(b) If $f(x) = x^2$, $g(x) = 5x - 6$ and $x \in \{2, 3\}$. Prove that $f = g$.

7

2 Attempt any four :

14

(1) $\lim_{x \rightarrow 9} \frac{x-9}{\sqrt{x-3}}$

(2) $\lim_{x \rightarrow 2} \frac{x^2 - 4}{x^3 - x - 6}$

(3) $\lim_{x \rightarrow 2} \left(\frac{1}{x-2} - \frac{2}{x^2 - 2x} \right)$

$$(4) \quad \lim_{n \rightarrow \infty} \frac{4n+9}{18n^2 - 300}$$

$$(5) \quad \lim_{x \rightarrow 0} \frac{e^{5x} - e^{2x}}{x}$$

$$(6) \quad \lim_{n \rightarrow \infty} \frac{1+2+3+\dots+n}{(n+3)(n+4)}$$

3 (a) Define : 7

- (1) Arithmetic progression
- (2) Geometric progression
- (3) Harmonic progression.

(b) The sum of four numbers is G.P. is 60 and A.M. 7
between the first and last is 18. Find four numbers.

OR

3 (a) In usual notation prove that $S_n = \frac{n}{2}(a+\ell)$. 7

(b) The sum of first 11 terms of A.P. is 19 and the 7
sum of first 19 terms is 11. Find sum of first 30 terms.

4 (a) Define : 7

- (i) Permutation
- (ii) Combination.

(b) Find 'n' 7

$$(i) \quad (n+3)P_3 : (n+2)P_4 = 14 : 1$$

$$(ii) \quad {}^7P_n = 60 \cdot {}^7P_{n-3}$$

OR

4 (a) Prove that : ${}^nC_r + {}^nC_{r-1} = {}^{n+1}C_r$ 7

(b) In a college there are 20 Professors including the Principal and Vice principal, from whom a committee of 5 is to be appointed. Find how many committee will contain :

- (i) The principal and Vice principal
- (ii) The principal but not Vice principal
- (iii) Neither the principal nor Vice principal.

5 (a) In usual notation prove that $\sum n^3 = \frac{n^2(n+1)^2}{4}$. 7

(b) Prove that there is no constant term in expansion of 7

$$\left(2x^2 - \frac{1}{4x}\right)^4.$$

OR

5 (a) By using Principle of Mathematical induction prove that 7

$$\frac{1}{1 \cdot 5} + \frac{1}{5 \cdot 9} + \frac{1}{9 \cdot 13} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$

(b) Find the middle terms in expansion of $\left(x - \frac{1}{x}\right)^4$. 7
